Final Report; GEF loan 929

Mt Etna's east flank surface displacements $\&$ the siting of future eruptions

Leica system 530 GPS set up on the unstable east flank, with summit behind, $20^{\text {th }}$ September 2010

NERC GEF loan 929 scientific report

Mt Etna's east flank surface displacements and the siting of future eruptions

John B. Murray, Dept of Earth Sciences, The Open University

Abstract

This project is aimed at determining not the time, but the position of the next eruption of Mt Etna volcano, by measuring the detailed relative displacements of a dense network of GPS stations.

Background: In 2009, Etna completed its longest flank eruption in 17 years ($13{ }^{\text {th }}$ May 2008 $6^{\text {th }}$ July 2009). Like the eruptions of 2004 and 2006 October, the main eruptive vents were associated with the Southeast Crater, and were situated at the head of the Valle del Leone in its southern part. The activity was largely effusive, with comparatively little explosive activity. The lavas from these three eruptions have covered much of the lower part of the Valle del Leone, and the central Valle del Bove. In 2010 there was an ashy emission at SE Crater on April $10^{\text {th }}$.

The Etna ground deformation network is the longest-lived and by far the densest of such networks on Etna, with 95 stations at present, and it is the only one with stations within the Valle del Leone and the Valle del Bove, (where the recent eruptions have taken place) installed in 1983 and 1987. These stations were measured initially by trilateration, and from 1994 by dualfrequency GPS. Three of these long-lived stations were destroyed by the lavas of 2008-9, so one objective for 2010 will be the installation of new stations to replace these lost stations, and to add 3 more to increase the detail in this region.

Previous results: The results of these measurements have shown a marked difference in behaviour between the east side of the volcano and the west. Those stations on the east side have shown movements towards the sea (mainly easterly or southeasterly) of more than 2 metres in some cases, i.e. an average of 10 cm per year, though the rate of movement has varied greatly from year to year. Those on the west, on the other hand, have shown radial outward movements about one third of the magnitude of those on the east. On the lower flanks they have been comparatively stable, showing movement of about 1 cm per year or less. The dividing line between the two halves is marked by the northeast rift, continuing into the Pernicana fault to the north, and by the southern rift to the south, with other discontinuities within the unstable sector.

Underlying rationale: The apparent consequence of these movements has been the persistent opening of new fissures as a result of the tensional movement between the two halves of the volcano. The 1985, 1989, 1991-3, 2001, 2002-3 and 2008-9 eruptions all included north-south to NE-SW fissures, some of them intrusions from which no magma was erupted. There is also clear evidence from the data that once magma pathways had been determined by these large scale events, magma pressure greatly added to the movement, and that this magmatic component had a different proportion of the total movement for each eruption.

Another factor in the determination of eruption sites and supply channels has been the loading effect of erupted lava. This was first noticed in regard to the levelling measurements (Murray 1988) and was evident after the 1991-3 eruption (Massonet et al. 1995). In its simplest form, shear stress following flow emplacement reaches a maximum at the flow edge, causing fissures to open here which may later be used by erupting lavas.

Application of the three-dimensional measurements of movements at Etna to determine likely fissure positions and directions using mathematical modelling of the stress regime was attempted
by Dowden et al (1995). As an extension of this work, Dowden et al. (1997) took the three dimensional movements as surface boundary conditions, then integrated downwards to determine internal displacements, from which stress distributions within the mountain could be calculated. These studies pinpointed an area at depth from the 1989-1990 displacements that later marked the site of the 1991-3 eruption, and an area beneath the Southeast Crater and another SW of the Torre del Filosofo visible in the 1991-2 displacements marked the site of the February 1999 fissure eruption and the initial fractures of the 2001 eruption respectively (La Delfa et al. 2001, Bonnacorso et al. 2002).

Specific objectives

1. To determine the effect of recent surface displacements and lava loading on subsequent eruption position.
2. To measure the surface displacement 2009-2010 to determine internal stress distributions and likely positioning and orientation of future eruptive fissures.
3. To measure the 96 -station dual-frequency GPS network, using 7 Leica System 530 sets.
4. To install and measure new GPS stations, to replace those destroyed 2008-9 and intensify the network on the upper eastern flank.
5. To occupy and extend the 236 -station precise levelling network.
6. To measure the 27 Dry Tilt stations on the flanks.

All the practical objectives were achieved, and substantive advances in objective 1 are ongoing.

Volcanic activity

Since the previous trip in Sep-Oct 2009, Mt Etna had been essentially inactive, apart from quiet degassing from the summit and the 2008-9 eruptive fissure. Earlier in the year there had been occasional collapses and emissions of ashy clouds, such as that on June 19th, when ash was emitted from a vent at the southeast foot of the Southeast Crater for about an hour in the early morning.

During the trip, there was little sign of activity apart from quiet degassing from the Chasm, Northeast \& Southeast craters and the Bocca Nuova. During visits to the summit, no noises could be heard from the Chasm or Bocca Nuova, but on September $12^{\text {th }}$ strong prolonged rumbling could be heard from the Northeast Crater, indicating gas escape from the magma.

Survey procedure

We reoccupied all the ground deformation networks first established in 1975 (levelling and dry tilt) and between 1981 and 1987 (trilateration to 1994, GPS from 1994-2008). At the present time, the ground deformation stations consist of 95 dual-frequency GPS stations which are habitually measured as a static survey with occupation times 30 minutes to 18 hours, depending upon line lengths. Results give error ellipses to $<9 \mathrm{~mm}$ accuracy, precise levelling benchmarks which yield precisions of $<1 \mathrm{~mm}$ per km , and 27 dry tilt stations at widely scattered locations around the summit and flanks of the volcano, which measure changes in ground tilt of 3 to 10μ.

Data quality was good, similar to previous years, though some stations on the lower western flank experienced satellite problems, apparently due to the ever increasing height and density of conifer trees in the Corpo Forestale territory. Data were post-processed using Noto, Cagliari and Matera permanent GPS stations, using Leica GeoOffice software.

Two new GPS stations were installed, and during October, we again occupied the new precise levelling branches linking the southern traverse to the Rifugio Sapienza, and the one linking the northern traverse to the Piano della Concazze. We also established a new loop following the Corpo Forestale track, linking the Sapienza to the Piano Provenzana, to create a new giant levelling network extending the previous 236 station network to 343 stations, and more than
doubling the distance levelled from 34 km to 78 km . The aim of this levelling is to provide more accurate height control of GPS stations, 32 of which are common to both networks.

Personnel

The measurements were carried out by the following volunteer assistants:
Toby Balaam, University of Sheffield.
Guillermo Caravantes-Gonzalez, Open University
Anne Forbes, Open University
John B.Murray, Open University
Anne Peterson, Open University
Andrew Pitty, University College London
Phil Sargent, Nottignham Trent University
Julia Scott, Cambridge University,
Richard Wall, University College London
Xiomara Gabriela Villagomez, Tarragona, Spain.

Fig. 1: Vectors of horizontal movement 2009-2010, derived from GPS values at 95 stations

Preliminary findings

On previous occasions, it has been noted that whilst horizontal movements of benchmarks prior to eruptions could broadly be described as radial to the summit region, in detail the movement could be broken up into groups of stations with movements almost parallel to each other. This suggests that whilst the volcano as a whole is behaving elastically and/or plastically (Murray \& Pullen 1984), at a smaller scale the volcano surface is breaking up into slabs, with increased tensional strain or fissures between. This was particularly the case in 1987-1988 in the Valle del Leone, where such movements indicated tensional strain nearly one year prior to the 1989 eruption which included a voluminous eruptive fissure there, and also in 2005-6 prior to the flank eruption which began on 2006 October 13th, right at the end of our trip that year.

The measurements 2009-2010 (see fig. 1, opposite) suggest a similar difference between the movements in three areas of the volcano: the northeast, southeast and the lower northern sectors. Most stations in a block approximately $5 \times 5 \mathrm{~km}$ northeast of the summit moved parallel to each other $4-6 \mathrm{~cm}$ ENE, whereas those southeast of a line running diagonally across the middle of the Valle del Bove have moved in parallel $2-3 \mathrm{~cm}$ ESE. Another block is represented by those stations north of Monte Maletto, which effectively comprise the most northerly quarter of the volcanic edifice, and which have moved 2-3 cm NNE. The remaining stations show a slight outward spreading from the summit of $0.5-1.5 \mathrm{~cm}$.

Discussion

The most commonly used models of volcano deformation, developed initially by Anderson (1936) and later applied to deformation observed in active volcanoes by Mogi (1958), describe elastic displacement in an infinite half-space, and other more recent models are largely based on the same premises (e.g. Okada 1992). Although observed displacements in real volcanoes follow the predicted models reasonably well on a scale of several kilometres, the models break down at smaller scales when fractures develop. The above observations of 1987-8, 2005-6 and 2009-10 show that observed departures from elastic behaviour prior to eruption might be used to determine the most likely location of future fracture development, and therefore of future eruption locations.

Interpretation to date

An initial interpretation of the 2009-2010 data suggests that the northeast sector and the lower northern block could be moving transcurrently in a sinistral direction, but without accumulating much tensional strain. This interpretation is supported by the fact that the Pernicana fault runs between these two sectors. Similarly there is no appreciable increase in tension indicated at the junction between the summit spreading and the southeast sector, since movements at the join would tend to take up most of the strain. However, the line between the northeast and southeast sectors, where tensional strain is accumulating, runs east from the summit, and may represent a future eruptive fissure. The division between the lower northern sector and the summit is also a site of increased tensional strain, and so may represent a future eruptive fissure running northwest from the summit.

Preliminary findings

From the work carried out so far, the most likely position and orientation of the next flank eruption is from a fissure east of the summit, oriented east-west. This has partly been fulfilled in that on $11^{\text {th }}$ January 2011, the first of a series of short-lived but violent paroxysmal pyroclastic eruptions lasting a few hours took place from a new vent at the eastern foot of the southeast crater. Since then there have been 20 such paroxysms, the most recent on $9^{\text {th }}$ February 2012. At the time of writing, strombolian activity has started again within the new vent, where a new cone has built up over the past year now more than 200 m high. However, it remains to be seen whether the next flank eruption fissure follows the same trend.

Instrument deployment

TABLE 1: List of static observations carried out

	Station No.	Start date \& time
1	2	08/28/2010 08:08:16
2	26	08/28/2010 09:54:16
3	19	08/28/2010 10:32:06
4	77	08/28/2010 12:07:26
5	93	08/28/2010 12:14:36
6	76	08/28/2010 12:48:06
7	34	08/28/2010 12:53:51
8	40	08/28/2010 13:33:36
9	75	08/28/2010 13:34:21
10	22	08/28/2010 14:41:31
11	2	08/29/2010 06:28:16
12	20	08/29/2010 07:06:26
13	52	08/29/2010 07:55:36
14	93	08/29/2010 08:29:41
15	39	08/29/2010 09:51:31
16	12	08/29/2010 10:12:31
17	50	08/29/2010 10:31:46
18	24	08/29/2010 12:07:51
19	7	08/29/2010 13:44:41
20	52	08/29/2010 13:56:56
21	73	08/29/2010 13:58:01
22	47	08/29/2010 14:56:11
23	2	08/30/2010 06:30:26
24	27	08/30/2010 07:57:26
25	20	08/30/2010 08:21:06
26	85	08/30/2010 09:34:31
27	84	08/30/2010 10:11:46
28	32	08/30/2010 12:47:26
29	78	08/30/2010 13:28:36
30	10	08/30/2010 13:37:26
31	2	08/31/2010 06:25:16
32	57	08/31/2010 06:52:31
33	52	08/31/2010 08:23:21
34	80	08/31/2010 08:45:41
35	93	08/31/2010 08:51:31
36	15	08/31/2010 09:31:01
37	37	08/31/2010 09:45:31
38	41	08/31/2010 10:15:31
39	17	08/31/2010 10:35:36
40	21	08/31/2010 11:32:26
41	65	08/31/2010 11:34:01
42	64	08/31/2010 12:55:16
43	91	08/31/2010 13:48:56
44	2	09/01/2010 06:28
45	13	09/01/2010 06:56
46	11	09/01/2010 08:19
47	9	09/01/2010 09:04
48	20	09/01/2010 12:06
49	62	09/01/2010 12:32
50	2	09/02/2010 07:46
51	20	09/02/2010 08:24
52	52	09/02/2010 08:39
53	93	09/02/2010 09:01
54	23	09/02/2010 10:16
55	2	09/03/2010 07:02
56	14	09/03/2010 07:37
57	48	09/03/2010 07:47
58	95	09/03/2010 08:17

End date \& time
08/28/2010 16:19:11
08/28/2010 15:44:51
08/28/2010 15:29:56
08/28/2010 12:28:06
08/28/2010 14:47:01
08/28/2010 14:28:51
08/28/2010 13:15:01
08/28/2010 13:56:56
08/28/2010 14:04:06
08/28/2010 15:01:31
08/29/2010 17:03:46
08/29/2010 16:25:31
08/29/2010 13:49:06
08/29/2010 15:17:36
08/29/2010 12:28:11
08/29/2010 11:07:51
08/29/2010 10:59:11
08/29/2010 12:42:21
08/29/2010 14:23:46
08/29/2010 15:41:51
08/29/2010 14:18:26
08/29/2010 15:40:31
08/30/2010 15:34:06
08/30/2010 14:35:16
08/30/2010 14:51:06
08/30/2010 09:56:06
08/30/2010 10:31:46
08/30/2010 14:20:41
08/30/2010 14:01:16
08/30/2010 14:06:16
08/31/2010 14:14:41
08/31/2010 14:49:51
08/31/2010 13:14:11
08/31/2010 09:08:31
08/31/2010 12:48:21
08/31/2010 09:55:56
08/31/2010 12:17:16
08/31/2010 10:37:31
08/31/2010 10:59:16
08/31/2010 12:01:31
08/31/2010 12:00:01
08/31/2010 13:20:11
08/31/2010 14:08:51
09/01/2010 15:27
09/01/2010 15:55
09/01/2010 08:412
09/01/2010 09:262
09/01/2010 14:45
09/01/2010 13:02
09/02/2010 13:00
09/02/2010 12:23
09/02/2010 12:11
09/02/2010 11:50
09/02/2010 10:52
09/03/2010 16:29
09/03/2010 12:48
09/03/2010 15:31
09/03/2010 10:34

Duration		Height Setup
8h 10' 55"	0.344	AT502 Pole
5h 50' 35"	0.344	AT502 Pole
4h 57' 50 "	0.344	AT502 Pole
20' 40"	0.739	AT502 Tripod
2h 32' 25 "	0.344	AT502 Pole
1h 40' 45 "	0.824	AT502 Tripod
21' 10 "	0.648	AT502 Tripod
23' 20 "	0.564	AT502 Tripod
29' 45 "	0.838	AT502 Tripod
20' 00"	0.942	AT502 Tripod
10h 35' 30"	0.344	AT502 Pole
9h 19' 05"	0.344	AT502 Pole
5h 53' 30"	0.344	AT502 Pole
6h 47' 55"	0.344	AT502 Pole
2h 36' 40 "	0.627	AT502 Tripod
55' 20 "	1.066	AT502 Tripod
27' 25 "	0.344	AT502 Pole
34'30"	0.344	AT502 Pole
39' 05"	0.730	AT502 Tripod
1h 44' 55"	0.344	AT502 Pole
20' 25 "	0.531	AT502 Tripod
44' 20 "	1.082	AT502 Tripod
9h 03' 40 "	0.344	AT502 Pole
6h 37' 50"	0.344	AT502 Pole
6h 30' 00"	0.344	AT502 Pole
$21^{\prime} 35^{\prime \prime}$	0.483	AT502 Tripod
20' 00"	0.382	AT502 Tripod
1h 33' 15 "	0.692	AT502 Tripod
32' 40 "	0.604	AT502 Tripod
28'50"	0.805	AT502 Tripod
7h 49' 25 "	0.344	AT502 Pole
7h 57' 20"	0.344	AT502 Pole
4h 50' 50"	0.344	AT502 Pole
$22^{\prime} 50 "$	0.880	AT502 Tripod
3h 56' 50 "	0.344	AT502 Pole
24' $55^{\prime \prime}$	0.837	AT502 Tripod
2h 31' $45{ }^{\prime \prime}$	0.798	AT502 Tripod
22'00"	0.798	AT502 Tripod
23' 40 "	0.774	AT502 Tripod
29' $05{ }^{\prime \prime}$	0.942	AT502 Tripod
26' 00"	0.687	AT502 Tripod
24' 55 "	0.850	AT502 Tripod
19'55"	0.845	AT502 Tripod
8h 59' $15{ }^{\prime \prime}$	0.344	AT502 Pole
8h 58' 20 "	0.344	AT502 Pole
1'35'	0.688	AT502 Tripod
1'35"	0.860	AT502 Tripod
2h 39' 25 "	0.344	AT502 Pole
29' 55"	0.742	AT502 Tripod
5h 14' 05"	0.344	AT502 Pole
3h 59' 15"	0.344	AT502 Pole
3h 31' 40 "	0.344	AT502 Pole
2h 48' $55{ }^{\prime \prime}$	0.344	AT502 Pole
36' 35 "	1.020	AT502 Tripod
9h 27' 00 "	0.344	AT502 Pole
5h 10' 45"	0.344	AT502 Pole
7h 43' 50"	0.344	AT502 Pole
2h 17' $35{ }^{\prime \prime}$	0.344	AT502 Pole

	Station No.	Start date \& time
59	16	09/03/2010 09:04
60	31	09/03/2010 09:41
61	42	09/03/2010 10:12
62	72	09/03/2010 11:55
63	35	09/03/2010 13:49
64	2	09/04/2010 06:46
65	20	09/04/2010 07:30
66	52	09/04/2010 08:17
67	93	09/04/2010 08:52
68	30	09/04/2010 09:47
69	1	09/04/2010 10:30
70	22	09/04/2010 10:55
71	82	09/04/2010 12:17
72	71	09/04/2010 12:54
73	87	09/04/2010 13:28
74	38	09/04/2010 14:08
75	82	09/04/2010 14:09
76	14	09/05/2010 06:49
77	2	09/05/2010 07:14
78	28	09/05/2010 07:53
79	52	09/05/2010 08:23
80	93	09/05/2010 08:48
81	46	09/05/2010 09:46
82	53	09/05/2010 10:27
83	8	09/05/2010 10:51
84	90	09/05/2010 13:45
85	2	09/06/2010 06:48
86	52	09/06/2010 07:34
87	93	09/06/2010 08:22
88	65	09/06/2010 09:54
89	36	09/06/2010 10:41
90	84	09/06/2010 10:47
91	45	09/06/2010 11:50
92	37	09/06/2010 13:12
93	2	09/07/2010 07:01
94	20	09/07/2010 07:42
95	52	09/07/2010 08:00
96	89	09/07/2010 09:14
97	86	09/07/2010 09:47
98	43	09/07/2010 10:34
99	61	09/07/2010 12:34
100	60	09/07/2010 12:58
101	67	09/08/2010 06:28
102	68	09/08/2010 06:44
103	2	09/08/2010 06:49
104	69	09/08/2010 06:54
105	92	09/08/2010 07:31
106	70	09/08/2010 08:48
107	55	09/08/2010 09:00
108	14	09/08/2010 09:32
109	79	09/08/2010 09:44
110	95	09/08/2010 10:03
111	56	09/08/2010 11:10
112	2	09/09/2010 07:02
113	89	09/09/2010 07:50
114	63	09/09/2010 08:42
115	59	09/09/2010 09:16
116	57	09/09/2010 09:25
117	44	09/09/2010 10:58
118	66	09/09/2010 11:30
119	25	09/09/2010 13:52
120	2	09/10/2010 06:57

End date \& time	Duration		Height Setup
09/03/2010 13:18	4h 13' $25^{\prime \prime}$	0.344	AT502 Pole
09/03/2010 15:34	5h 52' $25^{\prime \prime}$	0.344	AT502 Pole
09/03/2010 14:12	3h 59' 30"	0.344	AT502 Pole
09/03/2010 14:57	3h 02' $15^{\prime \prime}$	0.344	AT502 Pole
09/03/2010 14:29	39' 55"	0.344	AT502 Pole
09/04/2010 16:43	9h 56' 15"	0.344	AT502 Pole
09/04/2010 16:04	8h 33' $55^{\prime \prime}$	0.344	AT502 Pole
09/04/2010 15:48	7h 31' 10"	0.344	AT502 Pole
09/04/2010 15:08	6h 15' $45^{\prime \prime}$	0.344	AT502 Pole
09/04/2010 11:20	1h 32' $35^{\prime \prime}$	0.993	AT502 Tripod
09/04/2010 12:36	2h $06^{\prime \prime} 15^{\prime \prime}$	0.736	AT502 Tripod
09/04/2010 13:12	2h 17' 30 "	0.612	AT502 Tripod
09/04/2010 14:02	1h 45' 20 "	0.344	AT502 Pole
09/04/2010 13:46	52' 25 "	0.843	AT502 Tripod
09/04/2010 15:02	1h 34' $05^{\prime \prime}$	0.604	AT502 Tripod
09/04/2010 14:34	26' 25 "	0.344	AT502 Pole
09/04/2010 14:51	$41^{\prime} 50 \prime$	0.344	AT502 Pole
09/05/2010 16:26	9h 37' $25{ }^{\prime \prime}$	0.344	AT502 Pole
09/05/2010 16:01	8h 47' $25^{\prime \prime}$	0.344	AT502 Pole
09/05/2010 15:28	7h 34' 10"	0.344	AT502 Pole
09/05/2010 15:00	6h 36' 55"	0.344	AT502 Pole
09/05/2010 14:35	5h 46' $30{ }^{\prime \prime}$	0.344	AT502 Pole
09/05/2010 10:03	16' 40 "	0.344	AT502 Pole
09/05/2010 11:30	1h 02' $25{ }^{\prime \prime}$	0.344	AT502 Pole
09/05/2010 11:36	44' $55^{\prime \prime}$	0.344	AT502 Pole
09/05/2010 14:30	44' 55"	0.344	AT502 Pole
09/06/2010 15:34	8h 46' $10^{\prime \prime}$	0.344	AT502 Pole
09/06/2010 14:49	7h 14' $30{ }^{\prime \prime}$	0.344	AT502 Pole
09/06/2010 14:25	6h 02' 50"	0.344	AT502 Pole
09/06/2010 12:25	2h 31' $15^{\prime \prime}$	0.880	AT502 Tripod
09/06/2010 11:15	33' 50"	0.849	AT502 Tripod
09/06/2010 13:52	3h 05' 20"	0.443	AT502 Tripod
09/06/2010 13:35	1h 44' 50"	0.898	AT502 Tripod
09/06/2010 13:28	15' 05"	1.133	AT502 Tripod
09/07/2010 14:44	7h 43' $35^{\prime \prime}$	0.344	AT502 Pole
09/07/2010 15:03	7h 20' $50{ }^{\prime \prime}$	0.344	AT502 Pole
09/07/2010 15:15	7h 15' $10{ }^{\prime \prime}$	0.344	AT502 Pole
09/07/2010 14:10	4h 55' 55"	0.344	AT502 Pole
09/07/2010 12:14	2h $26^{\prime} 15^{\prime \prime}$	0.344	AT502 Pole
09/07/2010 11:37	1h 02' $50{ }^{\prime \prime}$	1.193	AT502 Tripod
09/07/2010 13:51	1h 17' $15^{\prime \prime}$	0.344	AT502 Pole
09/07/2010 13:31	33' 30"	0.344	AT502 Pole
09/08/2010 13:48	7h 19' 55"	1.258	AT502 Tripod
09/08/2010 08:31	1h 46' $15^{\prime \prime}$	0.344	AT502 Pole
09/08/2010 13:09	6h 20' 10 "	0.344	AT502 Pole
09/08/2010 08:26	1h 32'30"	0.344	AT502 Pole
09/08/2010 08:07	35' $45^{\prime \prime}$	0.825	AT502 Tripod
09/08/2010 09:11	$22^{\prime} 40^{\prime \prime}$	0.835	AT502 Tripod
09/08/2010 12:54	3h 54' $30{ }^{\prime \prime}$	0.885	AT502 Tripod
09/08/2010 13:33	4h 01' 05"	0.344	AT502 Pole
09/08/2010 12:22	2h $38^{\prime} 15^{\prime \prime}$	1.146	AT502 Tripod
09/08/2010 14:05	4h 01' $20{ }^{\prime \prime}$	0.344	AT502 Pole
09/08/2010 12:28	1h 17' 50"	1.165	AT502 Tripod
09/09/2010 16:04	9h 01' 40"	0.344	AT502 Pole
09/09/2010 14:49	6h 58' $35{ }^{\prime \prime}$	0.344	AT502 Pole
09/09/2010 14:59	6h 16' 55"	0.344	AT502 Pole
09/09/2010 10:06	50' 20 "	0.857	AT502 Tripod
09/09/2010 15:11	5h 45' 45"	0.344	AT502 Pole
09/09/2010 15:27	4h 28' 40 "	0.344	AT502 Pole
09/09/2010 12:39	1h 08' $40{ }^{\prime \prime}$	0.344	AT502 Pole
09/09/2010 14:27	35' 40 "	0.344	AT502 Pole
09/10/2010 15:44	8h 46' 55"	0.344	AT502 Pole

Station No.		Start date \& time
121	20	09/10/2010 07:54
122	28	09/10/2010 11:30
123	28	09/10/2010 12:04
124	39	09/10/2010 12:16
125	78	09/10/2010 13:26
126	10	09/10/2010 13:32
127	32	09/10/2010 13:59
128	2	09/11/2010 06:45
129	14	09/11/2010 07:19
130	33	09/11/2010 07:21
131	31	09/11/2010 08:26
132	18	09/11/2010 09:06
133	72	09/11/2010 09:33
134	58	09/11/2010 10:08
135	45	09/11/2010 11:49
136	37	09/11/2010 12:20
137	54	09/11/2010 14:56
138	2	09/12/2010 06:49
139	14	09/12/2010 07:15
140	28	09/12/2010 08:15
141	11	09/12/2010 08:52
142	9	09/12/2010 09:41
143	70	09/12/2010 11:04
144	2	09/15/2010 06:30:06
145	57	09/15/2010 07:10:36
146	48	09/15/2010 08:44:31
147	16	09/15/2010 09:53:51
148	42	09/15/2010 10:46:26
149	83	09/15/2010 11:17:01
150	2	09/18/2010 06:39:06
151	28	09/18/2010 07:19:46
152	20	09/18/2010 07:50:21
153	52	09/18/2010 08:14:21
154	2	09/19/2010 06:58:06
155	2	09/20/2010 06:02:06
156	28	09/20/2010 06:57:46
157	52	09/20/2010 07:31:36
158	82	09/20/2010 07:48:56
159	76	09/20/2010 08:55:21
160	88	09/20/2010 09:52:51
161	71	09/20/2010 10:11:26
162	22	09/20/2010 10:38:26
163	30	09/20/2010 11:40:21
164	7	09/20/2010 12:10:16
165	73	09/20/2010 13:07:21
166	12	09/20/2010 13:50:21
167	2	09/21/2010 06:31:26
168	29	09/21/2010 07:31:06
169	94	09/21/2010 08:18:51
170	20	09/21/2010 08:53:56
171	24	09/21/2010 09:10:46
172	52	09/21/2010 09:19:11
173	93	09/21/2010 09:55:26
174	74	09/21/2010 10:52:06
175	38	09/21/2010 13:24:16
176	50	09/21/2010 13:41:56
177	2	09/22/2010 06:43:01
178	2	09/23/2010 06:32:16
179	52	09/23/2010 07:22:26
180	72	09/23/2010 08:05:41
181	35	09/23/2010 08:34:46
182	83	09/23/2010 09:28:21

End date \& time	Duration		Height Setup
09/10/2010 14:48	6h 53' $25{ }^{\prime \prime}$	0.344	AT502 Pole
09/10/2010 11:53	22'35"	0.344	AT502 Pole
09/10/2010 14:23	2h 19'15"	0.344	AT502 Pole
09/10/2010 14:58	2h 41'40"	0.893	AT502 Tripod
09/10/2010 14:20	53' $35{ }^{\prime \prime}$	0.837	AT502 Tripod
09/10/2010 14:15	42' 55"	0.958	AT502 Tripod
09/10/2010 14:17	17' 20 "	0.843	AT502 Tripod
09/11/2010 16:21	9h 36'05"	0.344	AT502 Pole
09/11/2010 07:42	23' $55^{\prime \prime}$	0.344	AT502 Pole
09/11/2010 07:42	21' 20 "	1.206	AT502 Tripod
09/11/2010 15:25	6h 58' 55"	0.344	AT502 Pole
09/11/2010 10:32	1h $26^{\prime} 35^{\prime \prime}$	0.769	AT502 Tripod
09/11/2010 13:40	4h 06' $25^{\prime \prime}$	0.344	AT502 Pole
09/11/2010 12:54	2h 45' 50"	0.514	AT502 Tripod
09/11/2010 12:53	1h 03' 30"	0.921	AT502 Tripod
09/11/2010 12:36	15' $45^{\prime \prime}$	0.888	AT502 Tripod
09/11/2010 15:26	29'10"	1.091	AT502 Tripod
09/12/2010 16:02	9h 13' 40 "	0.344	AT502 Pole
09/12/2010 15:35	8h 20' $05^{\prime \prime}$	0.344	AT502 Pole
09/12/2010 14:51	6h 35' $45^{\prime \prime}$	0.344	AT502 Pole
09/12/2010 09:13	21' 20 "	0.858	AT502 Tripod
09/12/2010 10:02	20' 50"	0.977	AT502 Tripod
09/12/2010 11:52	48'30"	0.839	AT502 Tripod
09/15/2010 16:05:26	9h 35' 20 "	0.344	AT502 Pole
09/15/2010 16:26:11	9h 15' 35"	0.344	AT502 Pole
09/15/2010 14:51:16	6h 06' 45"	0.344	AT502 Pole
09/15/2010 12:41:31	2h 47' $40{ }^{\prime \prime}$	0.344	AT502 Pole
09/15/2010 13:30:56	2h 44' $30^{\prime \prime}$	0.344	AT502 Pole
09/15/2010 14:03:01	2h 46'00"	0.344	AT502 Pole
09/18/2010 16:38:16	9h 59' 10 "	0.344	AT502 Pole
09/18/2010 14:36:11	7h 16' $25{ }^{\prime \prime}$	0.344	AT502 Pole
09/18/2010 15:23:11	7h 32' 50"	0.344	AT502 Pole
09/18/2010 15:39:51	7h 25' 30 "	0.344	AT502 Pole
09/19/2010 15:08:01	8h 09' 55"	0.344	AT502 Pole
09/20/2010 15:57:06	9h 55' 00"	0.344	AT502 Pole
09/20/2010 15:24:26	8h $26^{\prime} 40^{\prime \prime}$	0.344	AT502 Pole
09/20/2010 14:49:51	7h 18' $15{ }^{\prime \prime}$	0.344	AT502 Pole
09/20/2010 14:07:16	6h 18' 20 "	0.344	AT502 Pole
09/20/2010 09:15:21	20'00"	0.595	AT502 Tripod
09/20/2010 11:07:46	1h 14' 55"	0.625	AT502 Tripod
09/20/2010 12:34:41	2h $23{ }^{\prime} 15^{\prime \prime}$	0.835	AT502 Tripod
09/20/2010 11:15:01	36' 35"	0.711	AT502 Tripod
09/20/2010 14:21:36	2h 41' $15{ }^{\prime \prime}$	0.968	AT502 Tripod
09/20/2010 14:37:16	2h $27^{\prime} 00^{\prime \prime}$	0.781	AT502 Tripod
09/20/2010 13:23:36	16' 15 "	0.622	AT502 Tripod
09/20/2010 15:00:41	1h 10' 20 "	1.238	AT502 Tripod
09/21/2010 15:55:11	9h $23{ }^{\prime \prime} 45^{\prime \prime}$	0.344	AT502 Pole
09/21/2010 15:23:26	7h 52' 20 "	0.344	AT502 Pole
09/21/2010 11:49:36	3h 30' $45^{\prime \prime}$	0.344	AT502 Pole
09/21/2010 15:08:51	6h 14' 55"	0.344	AT502 Pole
09/21/2010 10:21:31	1h 10'45"	0.344	AT502 Pole
09/21/2010 14:54:31	5h 35' 20 "	0.344	AT502 Pole
09/21/2010 14:20:21	4h $24{ }^{\prime} 55^{\prime \prime}$	0.344	AT502 Pole
09/21/2010 12:34:36	1h 42' $30{ }^{\prime \prime}$	0.344	AT502 Pole
09/21/2010 14:41:11	1h 16'55"	0.344	AT502 Pole
09/21/2010 13:59:26	17' 30"	0.344	AT502 Pole
09/22/2010 09:39:16	2h 56' 15"	0.344	AT502 Pole
09/23/2010 14:31:21	7h 59'05"	0.344	AT502 Pole
09/23/2010 13:26:56	6h 04' 30 "	0.344	AT502 Pole
09/23/2010 12:46:56	4h 41' $15^{\prime \prime}$	0.344	AT502 Pole
09/23/2010 11:38:06	3h 03' 20 "	0.344	AT502 Pole
09/23/2010 10:48:21	$1 \mathrm{~h} 20^{\prime} 00^{\prime \prime}$	0.344	AT502 Pole

Station No.		Start date \& time	End date \& time	Duration		Height Setup
183	42	09/23/2010 10:03:51	09/23/2010 11:13:56	1h 10' 05"	0.344	AT502 Pole
184	58	09/23/2010 12:07:21	09/23/2010 12:28:16	20' 55"	0.417	AT502 Tripod
185	2	09/24/2010 06:24:46	09/24/2010 14:52:51	8h 28' $05^{\prime \prime}$	0.344	AT502 Pole
186	63	09/24/2010 12:51:01	09/24/2010 14:26:56	1h 35' 55"	0.344	AT502 Pole
187	25	09/24/2010 13:29:01	09/24/2010 13:52:26	23' 25 "	0.344	AT502 Pole
188	2	09/25/2010 06:41:21	09/25/2010 15:41:26	9h 00' 05"	0.344	AT502 Pole
189	2	09/26/2010 06:29:16	09/26/2010 16:48:46	10h 19' 30"	0.344	AT502 Pole
190	2	09/27/2010 06:47:46	09/27/2010 13:38:51	6h 51' 05"	0.344	AT502 Pole
191	3	09/28/2010 06:27:56	09/28/2010 16:25:11	9h 57' ${ }^{\prime \prime \prime}$	0.344	AT502 Pole
192	67	09/29/2010 07:18:26	09/29/2010 14:39:11	7h 20' 45"	1.380	AT502 Tripod
193	4	09/29/2010 07:59:51	09/29/2010 17:24:36	9h $24{ }^{\prime \prime} 4{ }^{\prime \prime}$	0.344	AT502 Pole
194	44	09/29/2010 08:30:41	09/29/2010 13:55:51	5h 25' 10 "	0.344	AT502 Pole
195	79	09/29/2010 09:12:41	09/29/2010 12:20:06	3h 07' 25"	1.221	AT502 Tripod
196	48	09/29/2010 10:00:06	09/29/2010 13:03:21	3h 03' 15"	0.344	AT502 Pole
197	5	09/30/2010 06:29:21	09/30/2010 16:06:21	9h 37' 00 "	0.344	AT502 Pole
198	63	09/30/2010 06:52:56	09/30/2010 15:46:11	8h 53' 15"	0.344	AT502 Pole
199	89	09/30/2010 07:06:51	09/30/2010 15:35:16	8h 28' 25 "	0.344	AT502 Pole
200	61	09/30/2010 07:25:36	09/30/2010 15:20:31	7h 54' 55"	0.344	AT502 Pole
201	86	09/30/2010 07:43:21	09/30/2010 15:07:01	7h 23 ' 40"	0.344	AT502 Pole
202	6	10/01/2010 06:28	10/01/2010 15:58	9h 30' $25^{\prime \prime}$	0.344	AT502 Pole
203	86	10/01/2010 07:18	10/01/2010 15:07	7h 49' 00"	0.344	AT502 Pole
204	43	10/01/2010 11:14	10/01/2010 12:51	1h 37' $00{ }^{\prime \prime}$	1.014	AT502 Tripod

NERC GEF

This is probably my last loan from NERC GEF, and I would particularly like to thank Alan Hobbs, Paul Kearney and the other personnel working there for their assistance in building up the Etna project over the years, and also the panel that have supported this project since 2001. They have always been helpful, cooperative and prompt, and have at times gone out of their way to make sure that equipment has been delivered in time.

References:

Anderson, E.M. 1936, Proceedings of the Royal Society of Edinburgh 56, 128-157
Bonaccorso, A. et al 2002, Geophysical Research Letters, 29, No. 13, 10.1029/2001GL014397.
Borgia, A. \& Murray, J.B., 2010, Geological Society of America Special Paper 470, 115-122.
La Delfa, S. et al 2001. J.Volcanol. \& Geotherm. Res. 105, 121-139.
Dowden, J. et al 1995, Tectonophysics 249, 141-154.
Dowden, J. et al. 1997, Tectonophysics 269, 299-315.
Massonet et al. 1995, Nature 375, 567 - 570.
Mogi, K. 1958, Bulletin of the Earthquake Research Institute, University of Tokyo 36, 99-134.
Murray, J.B. \& Pullen, A.D. 1984. Bulletin Volcanologique, 47-4 (2), 1145-1163
Murray, J.B. 1988, J.Volcanol. \& Geotherm. Res. 35, 121-139.
Murray, J.B. et al 2009, Earth \& Planetary Science Letters, doi: 10.1016/j.epsl.2009.06.020
Okada, Y. 1992. Bulletin of the Seismological Society of America, 82, 1018-1040

